GCSE SCIENCE (Double Award) Sample Assessment Materials 57

Candidate Name	Centi	re Nu	Candidate Number						
					0				

GCSE

SCIENCE (Double Award)

UNIT 2: (Double Award) CHEMISTRY 1 FOUNDATION TIER

SAMPLE ASSESSMENT MATERIALS

(1 hour 15 minutes)

For Examiner's use only											
Question	Maximum Mark	Mark Awarded									
1.	8										
2.	8										
3.	7										
4.	7										
5.	9										
6.	6										
7.	9										
8.	6										
Total	60										

ADDITIONAL MATERIALS

In addition to this paper you will require a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid. Write your name, centre number and candidate number in the spaces at the top of this page Answer all questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. Question **6** is a quality of extended response (QER) question where your writing skills will be assessed.

Answer all questions.

1. (a) The diagram below shows the chromatogram of six different coloured dyes from felt-tipped pens.

(iii) The R_f value of a substance can be used to identify that substance.

The R_f value is given by the formula:

 $R_{f} = \frac{\text{distance moved by the substance}}{\text{distance moved by the solvent front}}$

Calculate the R_f value of the substance in the red pen. [2]

R_f = _____

(b) The diagram below shows the apparatus that can be used to obtain water from a black ink solution.

2. (a) The diagrams below represent carbon dioxide (CO_2) , methane (CH_4) , nitrogen oxide (NO) and oxygen (O_2) *but not necessarily in that order*.

- Using the information above draw a diagram which represents one molecule of nitrogen trioxide, NO₃.

(b) (i) Sodium chlorate, $NaClO_3$, is used to bleach paper.

 $A_r(O) = 16$ $A_r(Na) = 23$ $A_r(Cl) = 35.5$

Calculate the relative molecular mass, $M_{\rm r}$, of sodium chlorate. [2]

	$M_{\rm r} = \dots$	
(ii)	Calculate the percentage of sodium in sodium chlorate.	[2]

Percentage of sodium =

3. Sodium thiosulfate solution reacts with dilute hydrochloric acid forming a yellow precipitate. This reaction can be investigated using the 'disappearing cross' experiment. The yellow precipitate formed during the reaction causes the 'X' marked on a piece of white paper to disappear. The time taken for this to happen can be measured.

10 cm³ of dilute hydrochloric acid were added separately to 50 cm³ sodium thiosulfate solutions of five different concentrations. The results are shown below.

Concentration of sodium thiosulfate	Reaction time (s)								
solution (g/dm³)	Run 1	Run 2	Run 3	Mean					
40	6	7	5	6					
32	7	7	7	7					
24	10	9	11	10					
16	19	17	18	18					
8	37	38	39	38					

(a) State whether you think the results are repeatable. Give the reason for your answer. [2]

.....

(b) Plot the results from the table on the grid below and draw a suitable line. [3]

(c) Put a tick (✓) next to the statement you agree with. [1]
Increasing the concentration, increases the reaction time
Increasing the concentration, decreases the reaction time
Increasing the concentration makes no difference to the reaction time
(d) Apart from the volumes of both reagents and the concentration of the acid, name the most important factor which must be kept the same during each experiment. [1]

.

4. The graph below shows how the Earth's global air temperature has changed from its average value over the last 1000 years. This has been used as evidence that global warming is taking place. Scientists started to record the temperature of the atmosphere in England in 1659. Temperatures before 1659 are based on data collected from ice cores, tree rings, ocean sediments and rock layers.

(d) The pictures below show the ice cap in the Earth's Arctic region.

Average extent of the ice during the month of September 1979, 1980 and 1981

Extent of ice in September 2000

Explain how these pictures support the information in the graph.	[2]

5. The diagram below shows some reactions of sodium.

6. Describe the treatment of the public water supply.

Include in your answer the three main stages in the purification process and the reasons for each stage. [6 QER]

PMT

7. (a) (i) Complete the following table that shows information about the atom of potassium. [2]

Element	lement Symbol		Number of neutrons	Number of electrons		
potassium	³⁹ K ₁₉ K					

- (ii) Use the Periodic Table of Elements to give the element
- (iii) The diagram below shows the electronic structure of an element in the Periodic Table.

Using **X** to represent an electron, draw a similar style diagram to show the electronic structure of the element which lies directly **above** this one in the Periodic Table. [1]

(b) (i) The chemical formula of aluminium nitrate is Al(NO₃)₃. Give the number of nitrogen atoms in the formula Al(NO₃)₃. [1]
 (ii) Give the chemical formula of potassium carbonate. [1]

(c) Boron has two isotopes, ${}^{11}_{5}B$ and ${}^{10}_{5}B$.

In terms of particles, give **one** similarity and **one** difference between the **nuclei** of these two boron atoms. [2]

Similarity	
Difference	

8. The graphs below show the solubilities of sodium chloride and copper(II) sulfate in water at different temperatures.

6

(a)	Compare how the solubilities of copper(II) sulfate and sodium chloride change as temperature increases. [3]
(b)	Calculate the mass of solid copper(II) sulfate that forms when a saturated solution in 50 g of water at 80 °C cools to 40 °C. [2]
	Mass = g
(c)	State why the temperature scale on solubility graphs generally ranges from 0 °C to 100 °C. [1]

END OF PAPER

POSITIVI	EIONS	NEGATIVE IONS						
Name	Formula	Name	Formula					
Aluminium	Al ³⁺	Bromide	Br ⁻					
Ammonium	NH4 ⁺	Carbonate	CO3 ²⁻					
Barium	Ba ²⁺	Chloride	CI					
Calcium	Ca ²⁺	Fluoride	F⁻					
Copper(II)	Cu ²⁺	Hydroxide	OH⁻					
Hydrogen	H⁺	lodide	F					
Iron(II)	Fe ²⁺	Nitrate	NO ₃ ⁻					
Iron(III)	Fe ³⁺	Oxide	0 ^{2-°}					
Lithium	Li⁺	Sulfate	SO₄ ^{2−}					
Magnesium	Mg ²⁺		4					
Nickel	Ni ²⁺							
Potassium	K⁺							
Silver	Ag⁺							
Sodium	Na [⁺]							
Zinc	Zn ²⁺							

FORMULAE FOR SOME COMMON IONS

Avogadro's number, $L = 6 \times 10^{23}$

1	2					Gro	oup					3	4	5	6	7	0
								1 H Hydrogen									4He Helium
⁷ _a Li Lithium	⁹ Be Beryirum								,			¹¹ 5B Boron	¹² ⁶ Carbon	14 N 7 N	¹⁶ 8 Oxygen	19 F 9 F	²⁰ Ne ¹⁰ Ne
21 Na 11 Na Sodium	²⁴ Mg 12 ^{Magresium}											27 Al 13 Al	²⁸ 14Si Silicon	³¹ ₁₅ P Phosphorus	³² 16 Sulfur	36 17 Cl Chlorine	40 Ar 18 Ar Argon
99 K 19 K Polæsium	40 Ca 20 Ca	Scandium	48 Tì 22 Tì Thanium	51 V 23 V Vanadjum	52 Cr 24 Cr Chromium	55 Mn 25 Mn Manganese	⁵⁶ 26Fe Iron	59 Co 27 Co	59 Ni 28 Ni Nickel	⁶⁴ Cu 29Cu Copper	⁶⁵ Zn Zinc	⁷⁰ Ga Gallium	73 Ge 32 Gemanum	75 AS 33 As Arsenic	⁷⁹ 34Se Selenium	^{e0} Br 36 Br Bromine	84 Kr 36 Krypton
37 Rb Rubidium	88 Sr 36 Sr Strontium	89 Y 39 Y Yttrium	⁹¹ ₄₀ Zr Zirconium	93 Nb 41 Nb Niobium	96 Mo 42 Mo	99 TG 43 TG Technetium	101 Ru Ruthenium	103 Rh 46 Rh	105 Pd 46 Pd Palladium	108 Ag 47 Ag Silver	112 Cd Cadmium	115 In 199 In Indium	¹¹⁹ 50 Sn Tin	122 Sb 51 Sb	128 Te 52 Te Tellurium	127 53 lodine	131 Xe 54 Xe
¹³³ Cs 55	¹³⁷ Ba 56 Barium	¹³⁹ La 57	179 Hf 72 Hf Hafnium	181 Ta 73 Ta Tantalum	184 W 74 W	185 Re 75 Re Rhenium	¹⁹⁰ Os 76	192 lr 77 lr	195 Pt 78 Pt Platinum	197 Au 79 Au Gold	²⁰¹ Hg ⁸⁰ Mercury	204 TI 81 TI Thailium	207 Pb 62 Lead	²⁰⁵ Bi 83Bi Bismuth	²¹⁰ Po ⁸⁴ Po	210 At 85 At	222 Rn 66 Rn Radon
223 Fr 67 Fr	225 Ra	227 AC							1								

Key:

Mass number A Atomic number Z Name